ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05939
18
3

DREQ: Document Re-Ranking Using Entity-based Query Understanding

11 January 2024
Shubham Chatterjee
Iain Mackie
Jeffery Dalton
    AI4TS
ArXivPDFHTML
Abstract

While entity-oriented neural IR models have advanced significantly, they often overlook a key nuance: the varying degrees of influence individual entities within a document have on its overall relevance. Addressing this gap, we present DREQ, an entity-oriented dense document re-ranking model. Uniquely, we emphasize the query-relevant entities within a document's representation while simultaneously attenuating the less relevant ones, thus obtaining a query-specific entity-centric document representation. We then combine this entity-centric document representation with the text-centric representation of the document to obtain a "hybrid" representation of the document. We learn a relevance score for the document using this hybrid representation. Using four large-scale benchmarks, we show that DREQ outperforms state-of-the-art neural and non-neural re-ranking methods, highlighting the effectiveness of our entity-oriented representation approach.

View on arXiv
Comments on this paper