ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05468
29
0

Introducing New Node Prediction in Graph Mining: Predicting All Links from Isolated Nodes with Graph Neural Networks

10 January 2024
D. Zanardini
Emilio Serrano
    AI4CE
    GNN
ArXivPDFHTML
Abstract

This paper introduces a new problem in the field of graph mining and social network analysis called new node prediction. More technically, the task can be categorized as zero-shot out-of-graph all-links prediction. This challenging problem aims to predict all links from a new, isolated, and unobserved node that was previously disconnected from the graph. Unlike classic approaches to link prediction (including few-shot out-of-graph link prediction), this problem presents two key differences: (1) the new node has no existing links from which to extract patterns for new predictions; and (2) the goal is to predict not just one, but all the links of this new node, or at least a significant part of them. Experiments demonstrate that an architecture based on Deep Graph Neural Networks can learn to solve this challenging problem in a bibliographic citation network.

View on arXiv
Comments on this paper