37
1

Machine Learning (ML)-assisted Beam Management in millimeter (mm)Wave Distributed Multiple Input Multiple Output (D-MIMO) systems

Abstract

Beam management (BM) protocols are critical for establishing and maintaining connectivity between network radio nodes and User Equipments (UEs). In Distributed Multiple Input Multiple Output systems (D-MIMO), a number of access points (APs), coordinated by a central processing unit (CPU), serves a number of UEs. At mmWave frequencies, the problem of finding the best AP and beam to serve the UEs is challenging due to a large number of beams that need to be sounded with Downlink (DL) reference signals. The objective of this paper is to investigate whether the best AP/beam can be reliably inferred from sounding only a small subset of beams and leveraging AI/ML for inference of best beam/AP. We use Random Forest (RF), MissForest (MF) and conditional Generative Adversarial Networks (c-GAN) for demonstrating the performance benefits of inference.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.