ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05073
15
1

Hierarchical Classification of Transversal Skills in Job Ads Based on Sentence Embeddings

10 January 2024
Florin Leon
M. Gavrilescu
S. Floria
A. Minea
ArXivPDFHTML
Abstract

This paper proposes a classification framework aimed at identifying correlations between job ad requirements and transversal skill sets, with a focus on predicting the necessary skills for individual job descriptions using a deep learning model. The approach involves data collection, preprocessing, and labeling using ESCO (European Skills, Competences, and Occupations) taxonomy. Hierarchical classification and multi-label strategies are used for skill identification, while augmentation techniques address data imbalance, enhancing model robustness. A comparison between results obtained with English-specific and multi-language sentence embedding models reveals close accuracy. The experimental case studies detail neural network configurations, hyperparameters, and cross-validation results, highlighting the efficacy of the hierarchical approach and the suitability of the multi-language model for the diverse European job market. Thus, a new approach is proposed for the hierarchical classification of transversal skills from job ads.

View on arXiv
Comments on this paper