ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05012
22
2

HiMTM: Hierarchical Multi-Scale Masked Time Series Modeling for Long-Term Forecasting

10 January 2024
Shubao Zhao
Ming Jin
Zhaoxiang Hou
Che-Sheng Yang
Zengxiang Li
Qingsong Wen
Yi Wang
ArXivPDFHTML
Abstract

Time series forecasting is crucial and challenging in the real world. The recent surge in interest regarding time series foundation models, which cater to a diverse array of downstream tasks, is noteworthy. However, existing methods often overlook the multi-scale nature of time series, an aspect crucial for precise forecasting. To bridge this gap, we propose HiMTM, a hierarchical multi-scale masked time series modeling method designed for long-term forecasting. Specifically, it comprises four integral components: (1) hierarchical multi-scale transformer (HMT) to capture temporal information at different scales; (2) decoupled encoder-decoder (DED) forces the encoder to focus on feature extraction, while the decoder to focus on pretext tasks; (3) multi-scale masked reconstruction (MMR) provides multi-stage supervision signals for pre-training; (4) cross-scale attention fine-tuning (CSA-FT) to capture dependencies between different scales for forecasting. Collectively, these components enhance multi-scale feature extraction capabilities in masked time series modeling and contribute to improved prediction accuracy. We conduct extensive experiments on 7 mainstream datasets to prove that HiMTM has obvious advantages over contemporary self-supervised and end-to-end learning methods. The effectiveness of HiMTM is further showcased by its application in the industry of natural gas demand forecasting.

View on arXiv
Comments on this paper