ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.04206
51
7

Effects of Multimodal Explanations for Autonomous Driving on Driving Performance, Cognitive Load, Expertise, Confidence, and Trust

8 January 2024
Robert Kaufman
Jean Costa
Everlyne Kimani
ArXivPDFHTML
Abstract

Advances in autonomous driving provide an opportunity for AI-assisted driving instruction that directly addresses the critical need for human driving improvement. How should an AI instructor convey information to promote learning? In a pre-post experiment (n = 41), we tested the impact of an AI Coach's explanatory communications modeled after performance driving expert instructions. Participants were divided into four (4) groups to assess two (2) dimensions of the AI coach's explanations: information type ('what' and 'why'-type explanations) and presentation modality (auditory and visual). We compare how different explanatory techniques impact driving performance, cognitive load, confidence, expertise, and trust via observational learning. Through interview, we delineate participant learning processes. Results show AI coaching can effectively teach performance driving skills to novices. We find the type and modality of information influences performance outcomes. Differences in how successfully participants learned are attributed to how information directs attention, mitigates uncertainty, and influences overload experienced by participants. Results suggest efficient, modality-appropriate explanations should be opted for when designing effective HMI communications that can instruct without overwhelming. Further, results support the need to align communications with human learning and cognitive processes. We provide eight design implications for future autonomous vehicle HMI and AI coach design.

View on arXiv
Comments on this paper