ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.03093
81
1
v1v2v3v4 (latest)

A white box solution to the black box problem of AI

5 January 2024
V. Kalmykov
L. V. Kalmykov
ArXiv (abs)PDFHTML
Abstract

Artificial intelligence based on neural networks has made significant progress. However, there are concerns about the reliability and security of this approach due to its lack of transparency. This is the black box problem of AI. Here we show how this problem can be solved using symbolic AI, which has a transparent white box nature. The widespread use of symbolic AI is hindered by the opacity of mathematical models and natural language terms, the lack of a unified ontology, and the combinatorial explosion of search options. To solve the AI black box problem and to implement general-purpose symbolic AI, we propose to use deterministic logic cellular automata with rules based on first principles of the general theory of the relevant domain. In this case, the general theory of the relevant domain plays the role of a knowledge base for the cellular automaton inference. A cellular automaton implements automatic parallel logical inference at three levels of organization of a complex system. Our verification of several ecological hypotheses provides a successful precedent for the implementation of white-box AI. Finally, we discuss a program for creating a general-purpose symbolic AI capable of processing knowledge and ensuring the reliability and safety of automated decisions.

View on arXiv
Comments on this paper