72
2

FED-NeRF: Achieve High 3D Consistency and Temporal Coherence for Face Video Editing on Dynamic NeRF

Abstract

The success of the GAN-NeRF structure has enabled face editing on NeRF to maintain 3D view consistency. However, achieving simultaneously multi-view consistency and temporal coherence while editing video sequences remains a formidable challenge. This paper proposes a novel face video editing architecture built upon the dynamic face GAN-NeRF structure, which effectively utilizes video sequences to restore the latent code and 3D face geometry. By editing the latent code, multi-view consistent editing on the face can be ensured, as validated by multiview stereo reconstruction on the resulting edited images in our dynamic NeRF. As the estimation of face geometries occurs on a frame-by-frame basis, this may introduce a jittering issue. We propose a stabilizer that maintains temporal coherence by preserving smooth changes of face expressions in consecutive frames. Quantitative and qualitative analyses reveal that our method, as the pioneering 4D face video editor, achieves state-of-the-art performance in comparison to existing 2D or 3D-based approaches independently addressing identity and motion. Codes will be released.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.