ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.01012
16
0

Liberating dimension and spectral norm: A universal approach to spectral properties of sample covariance matrices

2 January 2024
Yanqing Yin
ArXivPDFHTML
Abstract

In this paper, our objective is to present a constraining principle governing the spectral properties of the sample covariance matrix. This principle exhibits harmonious behavior across diverse limiting frameworks, eliminating the need for constraints on the rates of dimension ppp and sample size nnn, as long as they both tend to infinity. We accomplish this by employing a suitable normalization technique on the original sample covariance matrix. Following this, we establish a harmonic central limit theorem for linear spectral statistics within this expansive framework. This achievement effectively eliminates the necessity for a bounded spectral norm on the population covariance matrix and relaxes constraints on the rates of dimension ppp and sample size nnn, thereby significantly broadening the applicability of these results in the field of high-dimensional statistics. We illustrate the power of the established results by considering the test for covariance structure under high dimensionality, freeing both ppp and nnn.

View on arXiv
Comments on this paper