ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.00935
8
0

Boundary Attention: Learning to Localize Boundaries under High Noise

1 January 2024
Mia Gaia Polansky
Charles Herrmann
Junhwa Hur
Deqing Sun
Dor Verbin
Todd E. Zickler
ArXivPDFHTML
Abstract

We present a differentiable model that infers explicit boundaries, including curves, corners and junctions, using a mechanism that we call boundary attention. Boundary attention is a boundary-aware local attention operation that, when applied densely and repeatedly, progressively refines a field of variables that specify an unrasterized description of the local boundary structure in every overlapping patch within an image. It operates in a bottom-up fashion, similar to classical methods for sub-pixel edge localization and edge-linking, but with a higher-dimensional description of local boundary structure, a notion of spatial consistency that is learned instead of designed, and a sequence of operations that is end-to-end differentiable. We train our model using simple synthetic data and then evaluate it using photographs that were captured under low-light conditions with variable amounts of noise. We find that our method generalizes to natural images corrupted by real sensor noise, and predicts consistent boundaries under increasingly noisy conditions where other state-of-the-art methods fail.

View on arXiv
Comments on this paper