ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.00929
29
9

GenH2R: Learning Generalizable Human-to-Robot Handover via Scalable Simulation, Demonstration, and Imitation

1 January 2024
Zifan Wang
Junyu Chen
Ziqing Chen
Pengwei Xie
Rui Chen
Li Yi
ArXivPDFHTML
Abstract

This paper presents GenH2R, a framework for learning generalizable vision-based human-to-robot (H2R) handover skills. The goal is to equip robots with the ability to reliably receive objects with unseen geometry handed over by humans in various complex trajectories. We acquire such generalizability by learning H2R handover at scale with a comprehensive solution including procedural simulation assets creation, automated demonstration generation, and effective imitation learning. We leverage large-scale 3D model repositories, dexterous grasp generation methods, and curve-based 3D animation to create an H2R handover simulation environment named \simabbns, surpassing the number of scenes in existing simulators by three orders of magnitude. We further introduce a distillation-friendly demonstration generation method that automatically generates a million high-quality demonstrations suitable for learning. Finally, we present a 4D imitation learning method augmented by a future forecasting objective to distill demonstrations into a visuo-motor handover policy. Experimental evaluations in both simulators and the real world demonstrate significant improvements (at least +10\% success rate) over baselines in all cases. The project page is https://GenH2R.github.io/.

View on arXiv
Comments on this paper