ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.17071
96
56
v1v2 (latest)

SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation

28 December 2023
Zhengze Xu
Dongyue Wu
Changqian Yu
Xiangxiang Chu
Nong Sang
Changxin Gao
    ViT
ArXiv (abs)PDFHTMLGithub (274★)
Abstract

Recent real-time semantic segmentation methods usually adopt an additional semantic branch to pursue rich long-range context. However, the additional branch incurs undesirable computational overhead and slows inference speed. To eliminate this dilemma, we propose SCTNet, a single branch CNN with transformer semantic information for real-time segmentation. SCTNet enjoys the rich semantic representations of an inference-free semantic branch while retaining the high efficiency of lightweight single branch CNN. SCTNet utilizes a transformer as the training-only semantic branch considering its superb ability to extract long-range context. With the help of the proposed transformer-like CNN block CFBlock and the semantic information alignment module, SCTNet could capture the rich semantic information from the transformer branch in training. During the inference, only the single branch CNN needs to be deployed. We conduct extensive experiments on Cityscapes, ADE20K, and COCO-Stuff-10K, and the results show that our method achieves the new state-of-the-art performance. The code and model is available at https://github.com/xzz777/SCTNet

View on arXiv
Comments on this paper