ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.16623
22
1

Make BERT-based Chinese Spelling Check Model Enhanced by Layerwise Attention and Gaussian Mixture Model

27 December 2023
Yongchang Cao
Liang He
Zhanghua Wu
Xinyu Dai
ArXivPDFHTML
Abstract

BERT-based models have shown a remarkable ability in the Chinese Spelling Check (CSC) task recently. However, traditional BERT-based methods still suffer from two limitations. First, although previous works have identified that explicit prior knowledge like Part-Of-Speech (POS) tagging can benefit in the CSC task, they neglected the fact that spelling errors inherent in CSC data can lead to incorrect tags and therefore mislead models. Additionally, they ignored the correlation between the implicit hierarchical information encoded by BERT's intermediate layers and different linguistic phenomena. This results in sub-optimal accuracy. To alleviate the above two issues, we design a heterogeneous knowledge-infused framework to strengthen BERT-based CSC models. To incorporate explicit POS knowledge, we utilize an auxiliary task strategy driven by Gaussian mixture model. Meanwhile, to incorporate implicit hierarchical linguistic knowledge within the encoder, we propose a novel form of n-gram-based layerwise self-attention to generate a multilayer representation. Experimental results show that our proposed framework yields a stable performance boost over four strong baseline models and outperforms the previous state-of-the-art methods on two datasets.

View on arXiv
Comments on this paper