LIVEJoin the current RTAI Connect sessionJoin now

53
4

Towards Flexible, Scalable, and Adaptive Multi-Modal Conditioned Face Synthesis

Abstract

Recent progress in multi-modal conditioned face synthesis has enabled the creation of visually striking and accurately aligned facial images. Yet, current methods still face issues with scalability, limited flexibility, and a one-size-fits-all approach to control strength, not accounting for the differing levels of conditional entropy, a measure of unpredictability in data given some condition, across modalities. To address these challenges, we introduce a novel uni-modal training approach with modal surrogates, coupled with an entropy-aware modal-adaptive modulation, to support flexible, scalable, and scalable multi-modal conditioned face synthesis network. Our uni-modal training with modal surrogate that only leverage uni-modal data, use modal surrogate to decorate condition with modal-specific characteristic and serve as linker for inter-modal collaboration , fully learns each modality control in face synthesis process as well as inter-modal collaboration. The entropy-aware modal-adaptive modulation finely adjust diffusion noise according to modal-specific characteristics and given conditions, enabling well-informed step along denoising trajectory and ultimately leading to synthesis results of high fidelity and quality. Our framework improves multi-modal face synthesis under various conditions, surpassing current methods in image quality and fidelity, as demonstrated by our thorough experimental results.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.