ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.16040
18
1

Multi-scale Progressive Feature Embedding for Accurate NIR-to-RGB Spectral Domain Translation

26 December 2023
Xingxing Yang
Jie Chen
Zaifeng Yang
ArXivPDFHTML
Abstract

NIR-to-RGB spectral domain translation is a challenging task due to the mapping ambiguities, and existing methods show limited learning capacities. To address these challenges, we propose to colorize NIR images via a multi-scale progressive feature embedding network (MPFNet), with the guidance of grayscale image colorization. Specifically, we first introduce a domain translation module that translates NIR source images into the grayscale target domain. By incorporating a progressive training strategy, the statistical and semantic knowledge from both task domains are efficiently aligned with a series of pixel- and feature-level consistency constraints. Besides, a multi-scale progressive feature embedding network is designed to improve learning capabilities. Experiments show that our MPFNet outperforms state-of-the-art counterparts by 2.55 dB in the NIR-to-RGB spectral domain translation task in terms of PSNR.

View on arXiv
Comments on this paper