ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.15869
21
3

Medical Report Generation based on Segment-Enhanced Contrastive Representation Learning

26 December 2023
Ruoqing Zhao
Xi Wang
Hongliang Dai
Pan Gao
Piji Li
    MedIm
ArXivPDFHTML
Abstract

Automated radiology report generation has the potential to improve radiology reporting and alleviate the workload of radiologists. However, the medical report generation task poses unique challenges due to the limited availability of medical data and the presence of data bias. To maximize the utility of available data and reduce data bias, we propose MSCL (Medical image Segmentation with Contrastive Learning), a framework that utilizes the Segment Anything Model (SAM) to segment organs, abnormalities, bones, etc., and can pay more attention to the meaningful ROIs in the image to get better visual representations. Then we introduce a supervised contrastive loss that assigns more weight to reports that are semantically similar to the target while training. The design of this loss function aims to mitigate the impact of data bias and encourage the model to capture the essential features of a medical image and generate high-quality reports. Experimental results demonstrate the effectiveness of our proposed model, where we achieve state-of-the-art performance on the IU X-Ray public dataset.

View on arXiv
Comments on this paper