ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.15824
13
9

Self-Supervised Learning for Few-Shot Bird Sound Classification

25 December 2023
Ilyass Moummad
Romain Serizel
Nicolas Farrugia
    SSL
ArXivPDFHTML
Abstract

Self-supervised learning (SSL) in audio holds significant potential across various domains, particularly in situations where abundant, unlabeled data is readily available at no cost. This is pertinent in bioacoustics, where biologists routinely collect extensive sound datasets from the natural environment. In this study, we demonstrate that SSL is capable of acquiring meaningful representations of bird sounds from audio recordings without the need for annotations. Our experiments showcase that these learned representations exhibit the capacity to generalize to new bird species in few-shot learning (FSL) scenarios. Additionally, we show that selecting windows with high bird activation for self-supervised learning, using a pretrained audio neural network, significantly enhances the quality of the learned representations.

View on arXiv
Comments on this paper