ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.15162
26
7

Cycle-Consistency Learning for Captioning and Grounding

23 December 2023
Ning Wang
Jiajun Deng
Mingbo Jia
    ObjD
ArXivPDFHTML
Abstract

We present that visual grounding and image captioning, which perform as two mutually inverse processes, can be bridged together for collaborative training by careful designs. By consolidating this idea, we introduce CyCo, a cyclic-consistent learning framework to ameliorate the independent training pipelines of visual grounding and image captioning. The proposed framework (1) allows the semi-weakly supervised training of visual grounding; (2) improves the performance of fully supervised visual grounding; (3) yields a general captioning model that can describe arbitrary image regions. Extensive experiments show that our fully supervised grounding model achieves state-of-the-art performance, and the semi-weakly supervised one also exhibits competitive performance compared to the fully supervised counterparts. Our image captioning model has the capability to freely describe image regions and meanwhile shows impressive performance on prevalent captioning benchmarks.

View on arXiv
Comments on this paper