38
1

A self-attention-based differentially private tabular GAN with high data utility

Abstract

Generative Adversarial Networks (GANs) have become a ubiquitous technology for data generation, with their prowess in image generation being well-established. However, their application in generating tabular data has been less than ideal. Furthermore, attempting to incorporate differential privacy technology into these frameworks has often resulted in a degradation of data utility. To tackle these challenges, this paper introduces DP-SACTGAN, a novel Conditional Generative Adversarial Network (CGAN) framework for differentially private tabular data generation, aiming to surmount these obstacles. Experimental findings demonstrate that DP-SACTGAN not only accurately models the distribution of the original data but also effectively satisfies the requirements of differential privacy.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.