ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.12585
19
12

BadRL: Sparse Targeted Backdoor Attack Against Reinforcement Learning

19 December 2023
Jing Cui
Yufei Han
Yuzhe Ma
Jianbin Jiao
Junge Zhang
    AAML
ArXivPDFHTML
Abstract

Backdoor attacks in reinforcement learning (RL) have previously employed intense attack strategies to ensure attack success. However, these methods suffer from high attack costs and increased detectability. In this work, we propose a novel approach, BadRL, which focuses on conducting highly sparse backdoor poisoning efforts during training and testing while maintaining successful attacks. Our algorithm, BadRL, strategically chooses state observations with high attack values to inject triggers during training and testing, thereby reducing the chances of detection. In contrast to the previous methods that utilize sample-agnostic trigger patterns, BadRL dynamically generates distinct trigger patterns based on targeted state observations, thereby enhancing its effectiveness. Theoretical analysis shows that the targeted backdoor attack is always viable and remains stealthy under specific assumptions. Empirical results on various classic RL tasks illustrate that BadRL can substantially degrade the performance of a victim agent with minimal poisoning efforts 0.003% of total training steps) during training and infrequent attacks during testing.

View on arXiv
Comments on this paper