ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.11897
30
12

Text-Conditioned Resampler For Long Form Video Understanding

19 December 2023
Bruno Korbar
Yongqin Xian
A. Tonioni
Andrew Zisserman
Federico Tombari
ArXivPDFHTML
Abstract

In this paper we present a text-conditioned video resampler (TCR) module that uses a pre-trained and frozen visual encoder and large language model (LLM) to process long video sequences for a task. TCR localises relevant visual features from the video given a text condition and provides them to a LLM to generate a text response. Due to its lightweight design and use of cross-attention, TCR can process more than 100 frames at a time with plain attention and without optimised implementations. We make the following contributions: (i) we design a transformer-based sampling architecture that can process long videos conditioned on a task, together with a training method that enables it to bridge pre-trained visual and language models; (ii) we identify tasks that could benefit from longer video perception; and (iii) we empirically validate its efficacy on a wide variety of evaluation tasks including NextQA, EgoSchema, and the EGO4D-LTA challenge.

View on arXiv
Comments on this paper