ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10740
33
1

Unmasking Deepfake Faces from Videos Using An Explainable Cost-Sensitive Deep Learning Approach

17 December 2023
Faysal Mahmud
Yusha Abdullah
Minhajul Islam
Tahsin Aziz
    CVBM
ArXivPDFHTML
Abstract

Deepfake technology is widely used, which has led to serious worries about the authenticity of digital media, making the need for trustworthy deepfake face recognition techniques more urgent than ever. This study employs a resource-effective and transparent cost-sensitive deep learning method to effectively detect deepfake faces in videos. To create a reliable deepfake detection system, four pre-trained Convolutional Neural Network (CNN) models: XceptionNet, InceptionResNetV2, EfficientNetV2S, and EfficientNetV2M were used. FaceForensics++ and CelebDf-V2 as benchmark datasets were used to assess the performance of our method. To efficiently process video data, key frame extraction was used as a feature extraction technique. Our main contribution is to show the models adaptability and effectiveness in correctly identifying deepfake faces in videos. Furthermore, a cost-sensitive neural network method was applied to solve the dataset imbalance issue that arises frequently in deepfake detection. The XceptionNet model on the CelebDf-V2 dataset gave the proposed methodology a 98% accuracy, which was the highest possible whereas, the InceptionResNetV2 model, achieves an accuracy of 94% on the FaceForensics++ dataset. Source Code: https://github.com/Faysal-MD/Unmasking-Deepfake-Faces-from-Videos-An-Explainable-Cost-Sensitive-Deep-Learning-Approach-IEEE2023

View on arXiv
Comments on this paper