ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10112
39
1

NM-FlowGAN: Modeling sRGB Noise with a Hybrid Approach based on Normalizing Flows and Generative Adversarial Networks

15 December 2023
Young Joo Han
Ha-Jin Yu
ArXivPDFHTML
Abstract

Modeling and synthesizing real sRGB noise is crucial for various low-level vision tasks, such as building datasets for training image denoising systems. The distribution of real sRGB noise is highly complex and affected by a multitude of factors, making its accurate modeling extremely challenging. Therefore, recent studies have proposed methods that employ data-driven generative models, such as generative adversarial networks (GAN) and Normalizing Flows. These studies achieve more accurate modeling of sRGB noise compared to traditional noise modeling methods. However, there are performance limitations due to the inherent characteristics of each generative model. To address this issue, we propose NM-FlowGAN, a hybrid approach that exploits the strengths of both GAN and Normalizing Flows. We simultaneously employ a pixel-wise noise modeling network based on Normalizing Flows, and spatial correlation modeling networks based on GAN. In our experiments, our NM-FlowGAN outperforms other baselines on the sRGB noise synthesis task. Moreover, the denoising neural network, trained with synthesized image pairs from our model, also shows superior performance compared to other baselines. Our code is available at: \url{https://github.com/YoungJooHan/NM-FlowGAN}.

View on arXiv
Comments on this paper