ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10057
13
8

Generative AI in Writing Research Papers: A New Type of Algorithmic Bias and Uncertainty in Scholarly Work

4 December 2023
Rishab Jain
Aditya Jain
ArXivPDFHTML
Abstract

The use of artificial intelligence (AI) in research across all disciplines is becoming ubiquitous. However, this ubiquity is largely driven by hyperspecific AI models developed during scientific studies for accomplishing a well-defined, data-dense task. These AI models introduce apparent, human-recognizable biases because they are trained with finite, specific data sets and parameters. However, the efficacy of using large language models (LLMs) -- and LLM-powered generative AI tools, such as ChatGPT -- to assist the research process is currently indeterminate. These generative AI tools, trained on general and imperceptibly large datasets along with human feedback, present challenges in identifying and addressing biases. Furthermore, these models are susceptible to goal misgeneralization, hallucinations, and adversarial attacks such as red teaming prompts -- which can be unintentionally performed by human researchers, resulting in harmful outputs. These outputs are reinforced in research -- where an increasing number of individuals have begun to use generative AI to compose manuscripts. Efforts into AI interpretability lag behind development, and the implicit variations that occur when prompting and providing context to a chatbot introduce uncertainty and irreproducibility. We thereby find that incorporating generative AI in the process of writing research manuscripts introduces a new type of context-induced algorithmic bias and has unintended side effects that are largely detrimental to academia, knowledge production, and communicating research.

View on arXiv
Comments on this paper