ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09582
54
7

Phoneme-aware Encoding for Prefix-tree-based Contextual ASR

15 December 2023
Hayato Futami
E. Tsunoo
Yosuke Kashiwagi
Hiroaki Ogawa
Siddhant Arora
Shinji Watanabe
ArXiv (abs)PDFHTML
Abstract

In speech recognition applications, it is important to recognize context-specific rare words, such as proper nouns. Tree-constrained Pointer Generator (TCPGen) has shown promise for this purpose, which efficiently biases such words with a prefix tree. While the original TCPGen relies on grapheme-based encoding, we propose extending it with phoneme-aware encoding to better recognize words of unusual pronunciations. As TCPGen handles biasing words as subword units, we propose obtaining subword-level phoneme-aware encoding by using alignment between phonemes and subwords. Furthermore, we propose injecting phoneme-level predictions from CTC into queries of TCPGen so that the model better interprets the phoneme-aware encodings. We conducted ASR experiments with TCPGen for RNN transducer. We observed that proposed phoneme-aware encoding outperformed ordinary grapheme-based encoding on both the English LibriSpeech and Japanese CSJ datasets, demonstrating the robustness of our approach across linguistically diverse languages.

View on arXiv
Comments on this paper