ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09456
13
0

Pioneering EEG Motor Imagery Classification Through Counterfactual Analysis

10 November 2023
Kang Yin
Hye-Bin Shin
Hee-Dong Kim
Seong-Whan Lee
ArXivPDFHTML
Abstract

The application of counterfactual explanation (CE) techniques in the realm of electroencephalography (EEG) classification has been relatively infrequent in contemporary research. In this study, we attempt to introduce and explore a novel non-generative approach to CE, specifically tailored for the analysis of EEG signals. This innovative approach assesses the model's decision-making process by strategically swapping patches derived from time-frequency analyses. By meticulously examining the variations and nuances introduced in the classification outcomes through this method, we aim to derive insights that can enhance interpretability. The empirical results obtained from our experimental investigations serve not only to validate the efficacy of our proposed approach but also to reinforce human confidence in the model's predictive capabilities. Consequently, these findings underscore the significance and potential value of conducting further, more extensive research in this promising direction.

View on arXiv
Comments on this paper