Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy

The recent development of connected and automated vehicle (CAV) technologies has spurred investigations to optimize dense urban traffic. This paper considers advisory autonomy, in which real-time driving advisories are issued to drivers, thus blending the CAV and the human driver. Due to the complexity of traffic systems, recent studies of coordinating CAVs have resorted to leveraging deep reinforcement learning (RL). Advisory autonomy is formalized as zero-order holds, and we consider a range of hold duration from 0.1 to 40 seconds. However, despite the similarity of the higher frequency tasks on CAVs, a direct application of deep RL fails to be generalized to advisory autonomy tasks. We introduce Temporal Transfer Learning (TTL) algorithms to select source tasks, systematically leveraging the temporal structure to solve the full range of tasks. TTL selects the most suitable source tasks to maximize the performance of the range of tasks. We validate our algorithms on diverse mixed-traffic scenarios, demonstrating that TTL more reliably solves the tasks than baselines. This paper underscores the potential of coarse-grained advisory autonomy with TTL in traffic flow optimization.
View on arXiv