ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09417
13
3

DTP-Net: Learning to Reconstruct EEG signals in Time-Frequency Domain by Multi-scale Feature Reuse

27 November 2023
Yan Pei
Jiahui Xu
Qianhao Chen
Chenhao Wang
Feng Yu
Lisan Zhang
Wei Luo
ArXivPDFHTML
Abstract

Electroencephalography (EEG) signals are easily corrupted by various artifacts, making artifact removal crucial for improving signal quality in scenarios such as disease diagnosis and brain-computer interface (BCI). In this paper, we present a fully convolutional neural architecture, called DTP-Net, which consists of a Densely Connected Temporal Pyramid (DTP) sandwiched between a pair of learnable time-frequency transformations for end-to-end electroencephalogram (EEG) denoising. The proposed method first transforms a single-channel EEG signal of arbitrary length into the time-frequency domain via an Encoder layer. Then, noises, such as ocular and muscle artifacts, are extracted by DTP in a multi-scale fashion and reduced. Finally, a Decoder layer is employed to reconstruct the artifact-reduced EEG signal. Additionally, we conduct an in-depth analysis of the representation learning behavior of each module in DTP-Net to substantiate its robustness and reliability. Extensive experiments conducted on two public semi-simulated datasets demonstrate the effective artifact removal performance of DTP-Net, which outperforms state-of-art approaches. Experimental results demonstrate cleaner waveforms and significant improvement in Signal-to-Noise Ratio (SNR) and Relative Root Mean Square Error (RRMSE) after denoised by the proposed model. Moreover, the proposed DTP-Net is applied in a specific BCI downstream task, improving the classification accuracy by up to 5.55% compared to that of the raw signals, validating its potential applications in the fields of EEG-based neuroscience and neuro-engineering.

View on arXiv
Comments on this paper