ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.08264
26
3

Kunyu: A High-Performing Global Weather Model Beyond Regression Losses

4 December 2023
Zekun Ni
ArXivPDFHTML
Abstract

Over the past year, data-driven global weather forecasting has emerged as a new alternative to traditional numerical weather prediction. This innovative approach yields forecasts of comparable accuracy at a tiny fraction of computational costs. Regrettably, as far as I know, existing models exclusively rely on regression losses, producing forecasts with substantial blurring. Such blurring, although compromises practicality, enjoys an unfair advantage on evaluation metrics. In this paper, I present Kunyu, a global data-driven weather forecasting model which delivers accurate predictions across a comprehensive array of atmospheric variables at 0.35{\deg} resolution. With both regression and adversarial losses integrated in its training framework, Kunyu generates forecasts with enhanced clarity and realism. Its performance outpaces even ECMWF HRES in some aspects such as the estimation of anomaly extremes, while remaining competitive with ECMWF HRES on evaluation metrics such as RMSE and ACC. Kunyu is an important step forward in closing the utility gap between numerical and data-driven weather prediction.

View on arXiv
Comments on this paper