ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06968
18
51

Hallucination Augmented Contrastive Learning for Multimodal Large Language Model

12 December 2023
Chaoya Jiang
Haiyang Xu
Mengfan Dong
Jiaxing Chen
Wei Ye
Mingshi Yan
Qinghao Ye
Ji Zhang
Fei Huang
Shikun Zhang
    VLM
ArXivPDFHTML
Abstract

Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks. However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information. In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning. We first analyzed the representation distribution of textual and visual tokens in MLLM, revealing two important findings: 1) there is a significant gap between textual and visual representations, indicating unsatisfactory cross-modal representation alignment; 2) representations of texts that contain and do not contain hallucinations are entangled, making it challenging to distinguish them. These two observations inspire us with a simple yet effective method to mitigate hallucinations. Specifically, we introduce contrastive learning into MLLMs and use text with hallucination as hard negative examples, naturally bringing representations of non-hallucinative text and visual samples closer while pushing way representations of non-hallucinating and hallucinative text. We evaluate our method quantitatively and qualitatively, showing its effectiveness in reducing hallucination occurrences and improving performance across multiple benchmarks. On the MMhal-Bench benchmark, our method obtains a 34.66% /29.5% improvement over the baseline MiniGPT-4/LLaVA. Our code is available on https://github.com/X-PLUG/mPLUG-HalOwl/tree/main/hacl.

View on arXiv
Comments on this paper