ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06564
30
8
v1v2 (latest)

Promoting Counterfactual Robustness through Diversity

11 December 2023
Francesco Leofante
Nico Potyka
ArXiv (abs)PDFHTML
Abstract

Counterfactual explanations shed light on the decisions of black-box models by explaining how an input can be altered to obtain a favourable decision from the model (e.g., when a loan application has been rejected). However, as noted recently, counterfactual explainers may lack robustness in the sense that a minor change in the input can cause a major change in the explanation. This can cause confusion on the user side and open the door for adversarial attacks. In this paper, we study some sources of non-robustness. While there are fundamental reasons for why an explainer that returns a single counterfactual cannot be robust in all instances, we show that some interesting robustness guarantees can be given by reporting multiple rather than a single counterfactual. Unfortunately, the number of counterfactuals that need to be reported for the theoretical guarantees to hold can be prohibitively large. We therefore propose an approximation algorithm that uses a diversity criterion to select a feasible number of most relevant explanations and study its robustness empirically. Our experiments indicate that our method improves the state-of-the-art in generating robust explanations, while maintaining other desirable properties and providing competitive computational performance.

View on arXiv
Comments on this paper