ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06553
21
42

HOI-Diff: Text-Driven Synthesis of 3D Human-Object Interactions using Diffusion Models

11 December 2023
Xiaogang Peng
Yiming Xie
Zizhao Wu
Varun Jampani
Deqing Sun
Huaizu Jiang
    DiffM
ArXivPDFHTML
Abstract

We address the problem of generating realistic 3D human-object interactions (HOIs) driven by textual prompts. To this end, we take a modular design and decompose the complex task into simpler sub-tasks. We first develop a dual-branch diffusion model (HOI-DM) to generate both human and object motions conditioned on the input text, and encourage coherent motions by a cross-attention communication module between the human and object motion generation branches. We also develop an affordance prediction diffusion model (APDM) to predict the contacting area between the human and object during the interactions driven by the textual prompt. The APDM is independent of the results by the HOI-DM and thus can correct potential errors by the latter. Moreover, it stochastically generates the contacting points to diversify the generated motions. Finally, we incorporate the estimated contacting points into the classifier-guidance to achieve accurate and close contact between humans and objects. To train and evaluate our approach, we annotate BEHAVE dataset with text descriptions. Experimental results on BEHAVE and OMOMO demonstrate that our approach produces realistic HOIs with various interactions and different types of objects.

View on arXiv
Comments on this paper