ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.06408
22
4

DiffVL: Scaling Up Soft Body Manipulation using Vision-Language Driven Differentiable Physics

11 December 2023
Zhiao Huang
Feng Chen
Yewen Pu
Chun-Tse Lin
Hao Su
Chuang Gan
ArXivPDFHTML
Abstract

Combining gradient-based trajectory optimization with differentiable physics simulation is an efficient technique for solving soft-body manipulation problems. Using a well-crafted optimization objective, the solver can quickly converge onto a valid trajectory. However, writing the appropriate objective functions requires expert knowledge, making it difficult to collect a large set of naturalistic problems from non-expert users. We introduce DiffVL, a method that enables non-expert users to communicate soft-body manipulation tasks -- a combination of vision and natural language, given in multiple stages -- that can be readily leveraged by a differential physics solver. We have developed GUI tools that enable non-expert users to specify 100 tasks inspired by real-life soft-body manipulations from online videos, which we'll make public. We leverage large language models to translate task descriptions into machine-interpretable optimization objectives. The optimization objectives can help differentiable physics solvers to solve these long-horizon multistage tasks that are challenging for previous baselines.

View on arXiv
Comments on this paper