ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.05990
17
1

Constructing Vec-tionaries to Extract Message Features from Texts: A Case Study of Moral Appeals

10 December 2023
Zening Duan
Anqi Shao
Yicheng Hu
Heysung Lee
Xining Liao
Yoo Ji Suh
Jisoo Kim
Kai-Cheng Yang
Kaiping Chen
Sijia Yang
ArXivPDFHTML
Abstract

While researchers often study message features like moral content in text, such as party manifestos and social media, their quantification remains a challenge. Conventional human coding struggles with scalability and intercoder reliability. While dictionary-based methods are cost-effective and computationally efficient, they often lack contextual sensitivity and are limited by the vocabularies developed for the original applications. In this paper, we present an approach to construct vec-tionary measurement tools that boost validated dictionaries with word embeddings through nonlinear optimization. By harnessing semantic relationships encoded by embeddings, vec-tionaries improve the measurement of message features from text, especially those in short format, by expanding the applicability of original vocabularies to other contexts. Importantly, a vec-tionary can produce additional metrics to capture the valence and ambivalence of a message feature beyond its strength in texts. Using moral content in tweets as a case study, we illustrate the steps to construct the moral foundations vec-tionary, showcasing its ability to process texts missed by conventional dictionaries and word embedding methods and to produce measurements better aligned with crowdsourced human assessments. Furthermore, additional metrics from the vec-tionary unveiled unique insights that facilitated predicting outcomes such as message retransmission.

View on arXiv
Comments on this paper