65
0

Noise Adaptor in Spiking Neural Networks

Abstract

Recent strides in low-latency spiking neural network (SNN) algorithms have drawn significant interest, particularly due to their event-driven computing nature and fast inference capability. One of the most efficient ways to construct a low-latency SNN is by converting a pre-trained, low-bit artificial neural network (ANN) into an SNN. However, this conversion process faces two main challenges: First, converting SNNs from low-bit ANNs can lead to ``occasional noise" -- the phenomenon where occasional spikes are generated in spiking neurons where they should not be -- during inference, which significantly lowers SNN accuracy. Second, although low-latency SNNs initially show fast improvements in accuracy with time steps, these accuracy growths soon plateau, resulting in their peak accuracy lagging behind both full-precision ANNs and traditional ``long-latency SNNs'' that prioritize precision over speed. In response to these two challenges, this paper introduces a novel technique named ``noise adaptor.'' Noise adaptor can model occasional noise during training and implicitly optimize SNN accuracy, particularly at high simulation times TT. Our research utilizes the ResNet model for a comprehensive analysis of the impact of the noise adaptor on low-latency SNNs. The results demonstrate that our method outperforms the previously reported quant-ANN-to-SNN conversion technique. We achieved an accuracy of 95.95\% within 4 time steps on CIFAR-10 using ResNet-18, and an accuracy of 74.37\% within 64 time steps on ImageNet using ResNet-50. Remarkably, these results were obtained without resorting to any noise correction methods during SNN inference, such as negative spikes or two-stage SNN simulations. Our approach significantly boosts the peak accuracy of low-latency SNNs, bringing them on par with the accuracy of full-precision ANNs. Code will be open source.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.