ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.03970
12
1

Improving Medical Report Generation with Adapter Tuning and Knowledge Enhancement in Vision-Language Foundation Models

7 December 2023
Shibin Wu
Bang-ju Yang
Zhiyu Ye
Haoqian Wang
Hairong Zheng
Tong Zhang
    VLM
    MedIm
ArXivPDFHTML
Abstract

Medical report generation demands automatic creation of coherent and precise descriptions for medical images. However, the scarcity of labelled medical image-report pairs poses formidable challenges in developing large-scale neural networks capable of harnessing the potential of artificial intelligence, exemplified by large language models. This study builds upon the state-of-the-art vision-language pre-training and fine-tuning approach, BLIP-2, to customize general large-scale foundation models. Integrating adapter tuning and a medical knowledge enhancement loss, our model significantly improves accuracy and coherence. Validation on the dataset of ImageCLEFmedical 2023 demonstrates our model's prowess, achieving the best-averaged results against several state-of-the-art methods. Significant improvements in ROUGE and CIDEr underscore our method's efficacy, highlighting promising outcomes for the rapid medical-domain adaptation of the vision-language foundation models in addressing challenges posed by data scarcity.

View on arXiv
Comments on this paper