ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.03009
31
6

I-PHYRE: Interactive Physical Reasoning

4 December 2023
Shiqian Li
Ke Wu
Chi Zhang
Yixin Zhu
    LRM
ArXivPDFHTML
Abstract

Current evaluation protocols predominantly assess physical reasoning in stationary scenes, creating a gap in evaluating agents' abilities to interact with dynamic events. While contemporary methods allow agents to modify initial scene configurations and observe consequences, they lack the capability to interact with events in real time. To address this, we introduce I-PHYRE, a framework that challenges agents to simultaneously exhibit intuitive physical reasoning, multi-step planning, and in-situ intervention. Here, intuitive physical reasoning refers to a quick, approximate understanding of physics to address complex problems; multi-step denotes the need for extensive sequence planning in I-PHYRE, considering each intervention can significantly alter subsequent choices; and in-situ implies the necessity for timely object manipulation within a scene, where minor timing deviations can result in task failure. We formulate four game splits to scrutinize agents' learning and generalization of essential principles of interactive physical reasoning, fostering learning through interaction with representative scenarios. Our exploration involves three planning strategies and examines several supervised and reinforcement agents' zero-shot generalization proficiency on I-PHYRE. The outcomes highlight a notable gap between existing learning algorithms and human performance, emphasizing the imperative for more research in enhancing agents with interactive physical reasoning capabilities. The environment and baselines will be made publicly available.

View on arXiv
Comments on this paper