ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.02196
40
15

Dynamic Inertial Poser (DynaIP): Part-Based Motion Dynamics Learning for Enhanced Human Pose Estimation with Sparse Inertial Sensors

2 December 2023
Yu Zhang
Songpengcheng Xia
Lei Chu
Jiarui Yang
Qi Wu
Ling Pei
    3DH
ArXivPDFHTML
Abstract

This paper introduces a novel human pose estimation approach using sparse inertial sensors, addressing the shortcomings of previous methods reliant on synthetic data. It leverages a diverse array of real inertial motion capture data from different skeleton formats to improve motion diversity and model generalization. This method features two innovative components: a pseudo-velocity regression model for dynamic motion capture with inertial sensors, and a part-based model dividing the body and sensor data into three regions, each focusing on their unique characteristics. The approach demonstrates superior performance over state-of-the-art models across five public datasets, notably reducing pose error by 19\% on the DIP-IMU dataset, thus representing a significant improvement in inertial sensor-based human pose estimation. Our codes are available at {\url{https://github.com/dx118/dynaip}}.

View on arXiv
Comments on this paper