ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.02147
49
7

Rejuvenating image-GPT as Strong Visual Representation Learners

4 December 2023
Sucheng Ren
Zeyu Wang
Hongru Zhu
Junfei Xiao
Alan L. Yuille
Cihang Xie
    VLM
ArXivPDFHTML
Abstract

This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict the next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement is its compelling performance on the ImageNet-1K dataset -- by training on publicly available datasets, D-iGPT unprecedentedly achieves \textbf{90.0\%} top-1 accuracy with a vanilla ViT-H. Additionally, D-iGPT shows strong generalization on the downstream task. Code is available at https://github.com/OliverRensu/D-iGPT.

View on arXiv
Comments on this paper