ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.00991
32
0

Convergences for Minimax Optimization Problems over Infinite-Dimensional Spaces Towards Stability in Adversarial Training

2 December 2023
Takashi Furuya
Satoshi Okuda
Kazuma Suetake
Yoshihide Sawada
ArXivPDFHTML
Abstract

Training neural networks that require adversarial optimization, such as generative adversarial networks (GANs) and unsupervised domain adaptations (UDAs), suffers from instability. This instability problem comes from the difficulty of the minimax optimization, and there have been various approaches in GANs and UDAs to overcome this problem. In this study, we tackle this problem theoretically through a functional analysis. Specifically, we show the convergence property of the minimax problem by the gradient descent over the infinite-dimensional spaces of continuous functions and probability measures under certain conditions. Using this setting, we can discuss GANs and UDAs comprehensively, which have been studied independently. In addition, we show that the conditions necessary for the convergence property are interpreted as stabilization techniques of adversarial training such as the spectral normalization and the gradient penalty.

View on arXiv
Comments on this paper