ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.00353
23
5

On Exploring the Reasoning Capability of Large Language Models with Knowledge Graphs

1 December 2023
Pei-Chi Lo
Yiting Tsai
Ee-Peng Lim
San-Yih Hwang
    LRM
ArXivPDFHTML
Abstract

This paper examines the capacity of LLMs to reason with knowledge graphs using their internal knowledge graph, i.e., the knowledge graph they learned during pre-training. Two research questions are formulated to investigate the accuracy of LLMs in recalling information from pre-training knowledge graphs and their ability to infer knowledge graph relations from context. To address these questions, we employ LLMs to perform four distinct knowledge graph reasoning tasks. Furthermore, we identify two types of hallucinations that may occur during knowledge reasoning with LLMs: content and ontology hallucination. Our experimental results demonstrate that LLMs can successfully tackle both simple and complex knowledge graph reasoning tasks from their own memory, as well as infer from input context.

View on arXiv
Comments on this paper