ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.00236
35
0

Brainformer: Mimic Human Visual Brain Functions to Machine Vision Models via fMRI

30 November 2023
Xuan-Bac Nguyen
Xin Li
Pawan Sinha
Samee U. Khan
Khoa Luu
    ViT
    MedIm
ArXivPDFHTML
Abstract

Human perception plays a vital role in forming beliefs and understanding reality. A deeper understanding of brain functionality will lead to the development of novel deep neural networks. In this work, we introduce a novel framework named Brainformer, a straightforward yet effective Transformer-based framework, to analyze Functional Magnetic Resonance Imaging (fMRI) patterns in the human perception system from a machine-learning perspective. Specifically, we present the Multi-scale fMRI Transformer to explore brain activity patterns through fMRI signals. This architecture includes a simple yet efficient module for high-dimensional fMRI signal encoding and incorporates a novel embedding technique called 3D Voxels Embedding. Secondly, drawing inspiration from the functionality of the brain's Region of Interest, we introduce a novel loss function called Brain fMRI Guidance Loss. This loss function mimics brain activity patterns from these regions in the deep neural network using fMRI data. This work introduces a prospective approach to transfer knowledge from human perception to neural networks. Our experiments demonstrate that leveraging fMRI information allows the machine vision model to achieve results comparable to State-of-the-Art methods in various image recognition tasks.

View on arXiv
Comments on this paper