ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.00082
19
0

A Compact Implicit Neural Representation for Efficient Storage of Massive 4D Functional Magnetic Resonance Imaging

30 November 2023
Ruoran Li
Runzhao Yang
Wenxin Xiang
Yuxiao Cheng
Tingxiong Xiao
J. Suo
    AI4CE
ArXivPDFHTML
Abstract

Functional Magnetic Resonance Imaging (fMRI) data is a widely used kind of four-dimensional biomedical data, which requires effective compression. However, fMRI compressing poses unique challenges due to its intricate temporal dynamics, low signal-to-noise ratio, and complicated underlying redundancies. This paper reports a novel compression paradigm specifically tailored for fMRI data based on Implicit Neural Representation (INR). The proposed approach focuses on removing the various redundancies among the time series by employing several methods, including (i) conducting spatial correlation modeling for intra-region dynamics, (ii) decomposing reusable neuronal activation patterns, and (iii) using proper initialization together with nonlinear fusion to describe the inter-region similarity. This scheme appropriately incorporates the unique features of fMRI data, and experimental results on publicly available datasets demonstrate the effectiveness of the proposed method, surpassing state-of-the-art algorithms in both conventional image quality evaluation metrics and fMRI downstream tasks. This work in this paper paves the way for sharing massive fMRI data at low bandwidth and high fidelity.

View on arXiv
Comments on this paper