ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18807
29
1

Pre-registration for Predictive Modeling

30 November 2023
Jake M. Hofman
Angelos Chatzimparmpas
Amit Sharma
Duncan J. Watts
Jessica Hullman
    AI4CE
ArXivPDFHTML
Abstract

Amid rising concerns of reproducibility and generalizability in predictive modeling, we explore the possibility and potential benefits of introducing pre-registration to the field. Despite notable advancements in predictive modeling, spanning core machine learning tasks to various scientific applications, challenges such as overlooked contextual factors, data-dependent decision-making, and unintentional re-use of test data have raised questions about the integrity of results. To address these issues, we propose adapting pre-registration practices from explanatory modeling to predictive modeling. We discuss current best practices in predictive modeling and their limitations, introduce a lightweight pre-registration template, and present a qualitative study with machine learning researchers to gain insight into the effectiveness of pre-registration in preventing biased estimates and promoting more reliable research outcomes. We conclude by exploring the scope of problems that pre-registration can address in predictive modeling and acknowledging its limitations within this context.

View on arXiv
Comments on this paper