20
1

Robust-to-Noise Algorithms for Distributed Resource Allocation and Scheduling

Abstract

Efficient resource allocation and scheduling algorithms are essential for various distributed applications, ranging from wireless networks and cloud computing platforms to autonomous multi-agent systems and swarm robotic networks. However, real-world environments are often plagued by uncertainties and noise, leading to sub-optimal performance and increased vulnerability of traditional algorithms. This paper addresses the challenge of robust resource allocation and scheduling in the presence of noise and disturbances. The proposed study introduces a novel sign-based dynamics for developing robust-to-noise algorithms distributed over a multi-agent network that can adaptively handle external disturbances. Leveraging concepts from convex optimization theory, control theory, and network science the framework establishes a principled approach to design algorithms that can maintain key properties such as resource-demand balance and constraint feasibility. Meanwhile, notions of uniform-connectivity and versatile networking conditions are also addressed.

View on arXiv
Comments on this paper