ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18212
51
0

Whole-body Dynamic Collision Avoidance with Time-varying Control Barrier Functions

30 November 2023
Jihao Huang
Xuemin Chi
Zhitao Liu
Hongye Su
ArXivPDFHTML
Abstract

Recently, there has been increasing attention in robot research towards the whole-body collision avoidance. In this paper, we propose a safety-critical controller that utilizes time-varying control barrier functions (time varying CBFs) constructed by Robo-centric Euclidean Signed Distance Field (RC-ESDF) to achieve dynamic collision avoidance. The RC-ESDF is constructed in the robot body frame and solely relies on the robot's shape, eliminating the need for real-time updates to save computational resources. Additionally, we design two control Lyapunov functions (CLFs) to ensure that the robot can reach its destination. To enable real-time application, our safety-critical controller which incorporates CLFs and CBFs as constraints is formulated as a quadratic program (QP) optimization problem. We conducted numerical simulations on two different dynamics of an L-shaped robot to verify the effectiveness of our proposed approach.

View on arXiv
Comments on this paper