ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16594
25
0

Monitor Placement for Fault Localization in Deep Neural Network Accelerators

28 November 2023
Wei-Kai Liu
ArXivPDFHTML
Abstract

Systolic arrays are a prominent choice for deep neural network (DNN) accelerators because they offer parallelism and efficient data reuse. Improving the reliability of DNN accelerators is crucial as hardware faults can degrade the accuracy of DNN inferencing. Systolic arrays make use of a large number of processing elements (PEs) for parallel processing, but when one PE is faulty, the error propagates and affects the outcomes of downstream PEs. Due to the large number of PEs, the cost associated with implementing hardware-based runtime monitoring of every single PE is infeasible. We present a solution to optimize the placement of hardware monitors within systolic arrays. We first prove that 2N−12N-12N−1 monitors are needed to localize a single faulty PE and we also derive the monitor placement. We show that a second placement optimization problem, which minimizes the set of candidate faulty PEs for a given number of monitors, is NP-hard. Therefore, we propose a heuristic approach to balance the reliability and hardware resource utilization in DNN accelerators when number of monitors is limited. Experimental evaluation shows that to localize a single faulty PE, an area overhead of only 0.33% is incurred for a 256×256256\times 256256×256 systolic array.

View on arXiv
Comments on this paper