ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16488
19
0

Efficient Multimodal Diffusion Models Using Joint Data Infilling with Partially Shared U-Net

28 November 2023
Zizhao Hu
Shaochong Jia
Mohammad Rostami
    DiffM
    MedIm
ArXivPDFHTML
Abstract

Recently, diffusion models have been used successfully to fit distributions for cross-modal data translation and multimodal data generation. However, these methods rely on extensive scaling, overlooking the inefficiency and interference between modalities. We develop Partially Shared U-Net (PS-U-Net) architecture which is an efficient multimodal diffusion model that allows text and image inputs to pass through dedicated layers and skip-connections for preserving modality-specific fine-grained details. Inspired by image inpainting, we also propose a new efficient multimodal sampling method that introduces new scenarios for conditional generation while only requiring a simple joint distribution to be learned. Our empirical exploration of the MS-COCO dataset demonstrates that our method generates multimodal text and image data with higher quality compared to existing multimodal diffusion models while having a comparable size, faster training, faster multimodal sampling, and more flexible generation.

View on arXiv
Comments on this paper