42
29

GPT4Vis: What Can GPT-4 Do for Zero-shot Visual Recognition?

Abstract

This paper does not present a novel method. Instead, it delves into an essential, yet must-know baseline in light of the latest advancements in Generative Artificial Intelligence (GenAI): the utilization of GPT-4 for visual understanding. Our study centers on the evaluation of GPT-4's linguistic and visual capabilities in zero-shot visual recognition tasks: Firstly, we explore the potential of its generated rich textual descriptions across various categories to enhance recognition performance without any training. Secondly, we evaluate GPT-4's visual proficiency in directly recognizing diverse visual content. We conducted extensive experiments to systematically evaluate GPT-4's performance across images, videos, and point clouds, using 16 benchmark datasets to measure top-1 and top-5 accuracy. Our findings show that GPT-4, enhanced with rich linguistic descriptions, significantly improves zero-shot recognition, offering an average top-1 accuracy increase of 7% across all datasets. GPT-4 excels in visual recognition, outshining OpenAI-CLIP's ViT-L and rivaling EVA-CLIP's ViT-E, particularly in video datasets HMDB-51 and UCF-101, where it leads by 22% and 9%, respectively. We hope this research contributes valuable data points and experience for future studies. We release our code at https://github.com/whwu95/GPT4Vis.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.