ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.15627
23
1

Phonetic-aware speaker embedding for far-field speaker verification

27 November 2023
Zezhong Jin
Youzhi Tu
Man-Wai Mak
ArXivPDFHTML
Abstract

When a speaker verification (SV) system operates far from the sound sourced, significant challenges arise due to the interference of noise and reverberation. Studies have shown that incorporating phonetic information into speaker embedding can improve the performance of text-independent SV. Inspired by this observation, we propose a joint-training speech recognition and speaker recognition (JTSS) framework to exploit phonetic content for far-field SV. The framework encourages speaker embeddings to preserve phonetic information by matching the frame-based feature maps of a speaker embedding network with wav2vec's vectors. The intuition is that phonetic information can preserve low-level acoustic dynamics with speaker information and thus partly compensate for the degradation due to noise and reverberation. Results show that the proposed framework outperforms the standard speaker embedding on the VOiCES Challenge 2019 evaluation set and the VoxCeleb1 test set. This indicates that leveraging phonetic information under far-field conditions is effective for learning robust speaker representations.

View on arXiv
Comments on this paper